
A Software Organization Platform (SOP)

Sebastian Weber1, Ludger Thomas1, Mario Schmitt1, Ove Armbrust1, Eric Ras1,
Jörg Rech1, Özgür Uenalan1, Martin Wessner1, Marcel Linnenfelser2, and Björn

Decker3

1 Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

{Forename.Surname}@iese.fraunhofer.de

2 Synflag Online Agentur, Wendelinusstraße 38, 67435 Neustadt, Germany
m.linnen@synflag.com

3 empolis GmbH, Europaallee 10, 67663 Kaiserslautern, Germany

Bjoern.Decker@empolis.com

Abstract. Software engineering is a highly collaborative and complex process
involving a large number of different roles. In this process, every activity com-
prises the development of software artifacts that are created by a specific role or
provided by others and that might serve as input for subsequent activities.
Hence, software engineering highly depends on efficient management of and
access to various kinds of information. This article presents the concept of a
Software Organization Platform (SOP), which aims at supporting the creation,
storage, and exchange of such information as well as personal or organizational
experiences. Furthermore, we introduce our prototypical Wiki-based implemen-
tation of the SOP concept, which leverages less formal, innovative technologies
from the Web 2.0 domain.

Keywords: Software Organization Platform, Software Engineering Environ-
ment, Web 2.0, Software Lifecycle, Knowledge Management, Learning Soft-
ware Organization, Experience Factory, Collaboration, Communication, Wiki,
SME

1 Introduction

Demands for higher software quality are increasing steadily, while development cy-
cles are becoming shorter and shorter. Furthermore, in many cases, software devel-
opment is done by highly specialized teams around the globe that communicate using
state-of-the-art technology. For the efficient production of high-quality software un-
der those conditions, software engineering is gaining more and more importance.
Effective software engineering requires efficient communication between the in-
volved roles as well as well-established processes. Engineering software means going
through many phases, such as requirements engineering, architecture and design,
implementation, testing, and deployment, which need constant coordination and col-

 2

laboration. There exists a high correlation between the different phases, the roles
involved, the artifacts created, etc. An artifact of a particular phase (e.g., an UML
class diagram for business analysis) can be the basis of one or more artifacts of other
phases (e.g., several UML diagrams during design) and a single failure in one of the
early phases can cause enormous efforts when detected late in the development proc-
ess. In modern software engineering, the efficient creation, storage, and exchange of
artifacts and information are major challenges.

Besides the exchange of project-related information and artifacts, identifying, cap-
turing, and delivering explicit, tacit, organizational, or personal knowledge and ex-
periences of different maturity (on demand or proactively) is a challenge for any
software organization [1]. Every phase of the development process should benefit
from experiences and empirical evidences, such as personal experiences of the stake-
holders (e.g., in project VZ, feature XY was not accepted very well), as well as best
practices (e.g., design pattern XY reduced the failure rate by 50%), or worst practices
(e.g., code smells). Modern Learning Software Organizations (LSO) need to provide
usable mechanisms for handling such information and knowledge in globally operat-
ing software developing organizations.

This article presents our vision of a modern platform for supporting LSOs and the
related work in support of some of the requirements mentioned above. We provide a
more profound description of the concept of a Software Organization Platform (SOP).
Later on, the article also illustrates the conceptional foundation in the Web 2.0 para-
digm and the architecture of our implementation of an SOP (SOP 2.0), which is cur-
rently under development. Recent experiences and the possible roles of our new SOP
implementation regarding selected phases of the software lifecycle are also addressed.
Finally, a more general view on the status of our new SOP implementation and future
work is described.

2 The SOP Vision

In order to handle the steadily increasing complexity of software development, Soft-
ware Engineering Environments (SEE) emerged in the late 1980s. They aimed at
supporting the complete software lifecycle. Many current Integrated Development
Environments (IDE) realize several of the SEE principles, but no CASE (Computer-
Aided Software Engineering) tool provides comprehensive support for the whole
lifecycle. In contrast, tools mainly focus on the creation of artifacts of one particular
phase (e.g., Doors focuses on requirements engineering artifacts) or support multiple
phases isolated from each other (e.g., Eclipse models in UML projects during the
design phase distinct from source code in Java projects during the implementation
phase). Although the importance of collaborative activities for better leveraging the
collective knowledge within the software organization is increasing steadily, existing
tools do not or only rudimentarily support the identification, storage, and exchange of
information, knowledge, and experience that are beneficial for current or future pro-
jects.

From our point of view, existing solutions implement the SEE concept only par-
tially. Furthermore, in our opinion, the SEE concept does not go far enough because it

 3

does not cover all parts of the lifecycle and aims at integrating only tools (and not SE
artifacts/documents).

This article describes the concept of an SOP that picks up the original thoughts of
an SEE but concretizes and extends it by means of further aspects – lifecycle artifact
management, collaboration, and knowledge management (see section 4). In addition,
we present our prototypical Wiki-based implementation called SOP 2.0, which is
based on Web 2.0 technologies and servers for evaluation purposes. Our prototype
especially targets small and medium-sized organizations (SME) on low to medium
maturity levels that need usable, lightweight solutions for the intra-organizational
management of software engineering related knowledge and information.

SOP 2.0 represents the evolution of the SOP 1.0 prototype, which was first intro-
duced in Decker et al. and which can handle the exchange of information and collabo-
rative work on software artifacts [2]. Their initial prototype (a collection of Semantic
MediaWiki extensions) showed for the phase of requirements engineering that an
SOP can provide significant benefits and support for collaborative information ex-
change and communication between the involved personnel. They also identified
support for collaboration between all kinds of stakeholders and flexibility as being the
major strengths of such a platform.

However, their work was originally technology-driven. This article describes the
implementation-independent concept of an SOP more accurately and then presents
SOP 2.0 as a prototypical implementation. SOP 2.0 aims at solving the limits and
weaknesses of the first implementation (SOP 1.0), such as development limitations
for embedded CASE tools. In addition, SOP 1.0 cannot deliver a “rich user experi-
ence” (i.e., a desktop-like graphical user interface), which users expect from such a
platform. From the developer’s point of view, the class of potential applications is
limited (e.g., interactive visualization tools are difficult to implement).

Due to the positive results from the initial case studies where our initial prototype
(SOP 1.0) was used, the concept of an SOP seems to be suitable for extending the
view from support for specific phases to collaborative development during the entire
software lifecycle. With this experience, we define the conceptional requirements for
the implementation of such an advanced development environment:
• (RqColl): An SOP supports collaboration and the easy exchange of information

between the roles in the software lifecycle.
• (RqLife): An SOP supports the whole software lifecycle, not only selected phases

and specific tasks.
• (RqIntg): An SOP supports the integration of data and information from various

continuously updated sources within the software organization. It integrates data
(i.e., software artifacts/documents) from a broad range of specialized external
CASE tools that are used during the development process. In addition, an SOP im-
plementation allows integrating designated CASE tools directly into the platform.
Furthermore, it supports versioned, concurrent, and non-destructive editing of in-
formation.

• (RqLink): An SOP allows semantically linking information, people, and software
artifacts. The system should facilitate knowledge acquisition by collecting seman-
tic information either automatically or without much effort.

 4

• (RqSEF): An SOP is scalable, extendable, and flexible. It can be adapted to a broad
range of organizations. It allows users to extend or adapt it to their personal needs.
It provides views for various stakeholders and devices.

• (RqOpen): An SOP is open for its users and provides non-restrictive, non-
formalized access to information. It supports the use of open standards and inter-
operates with external tools using those standards.

• (RqInfO): An SOP reduces the information overload knowledge workers are ex-
posed to every day. It filters and aggregates relevant information and provides use-
ful visualizations.

The defined requirements neither insist on being universal nor do they have a broad
empirical basis. They have been set up as heuristics on the basis of existing personal
experiences with the initial prototype. However, they serve as conceptional guidelines
for the analysis and creation of an SOP and are referred to throughout this article.

The initial prototype of an SOP (throughout this article, we refer to it as “SOP
1.0”) helped us to define the underlying concepts and identify the requirements of an
SOP that constitutes a consequent advancement of an SEE focusing on knowledge
management and collaboration. We decided to develop a new implementation of an
SOP (throughout this article, we refer to it as “SOP 2.0”), which is based on a sophis-
ticated architecture that enables us to fulfill the defined requirements. Consequently,
“SOP 1.0” and “SOP 2.0” refer to concrete SOP implementations, while the term
“SOP” refers to the concept.

3 Related Work

The term Software Engineering Environment (SEE) emerged during the time of the
so-called software crisis [3]. The core idea is a platform that supports all tasks for
developing, reengineering, and maintaining complex software systems [12] by inte-
grating functions of SE tools for the creation of the actual software artifacts. The SEE
then supports the whole lifecycle, including the acquisition, storage, and presentation
of knowledge, plus collaborative tools for coping with the immense need for commu-
nication within a software project. An SOP, in contrast to an SEE, mainly integrates
data (i.e., SE artifacts/documents), metadata (e.g., about source code), and experi-
ences, which has the advantage that the stakeholders can use their favorite tools.

CODE is a knowledge-based tool developed by the Artificial Intelligence Labora-
tory at the University of Ottawa in the late 1990s. It was created for capturing, edit-
ing, and documenting knowledge within a software project [4]. The software was
intended to replace conventional tools (e.g., word processors) which, from today’s
perspective, actually did not work. Nevertheless, key concepts of CODE (e.g., the use
of ontologies) are interesting and can still be seen as state of the art [5]. Henninger [6]
introduced a similar tool, BORE, which aims at collecting and managing software
development knowledge. BORE supports evolving knowledge through case-based
techniques and domain analysis methods that capture emerging knowledge and syn-
thesize it into generally applicable forms.

Both the CODE and the BORE system rely on formalizing the users’ input in order
to acquire knowledge and make it more accessible with database queries, etc. Apart

 5

from pilot usages and proof of concept studies, it seems that such approaches seem to
have little impact on practice [5]. One reason might be that people tend not to spend
much extra effort on formalizing knowledge without deriving direct benefits, as re-
ported by Tim O’Reilly [7]. He states that users try to avoid extra effort for providing
structure or semantics because there are no immediate benefits visible to them. The
broad acceptance of lightweight Web 2.0 technology such as tagging rather than
highly sophisticated and formalized approaches (Semantic Web techniques) underpins
this opinion [8].

In the domain of experience management, which is a sub-domain of knowledge
management, the paradigm of the Experience Factory (EF) has been developed [9].
EF is an infrastructure designed to support experience management in software or-
ganizations. It supports the collection, pre-processing, analysis, and dissemination of
experiences and represents the physical or at least logical separation of the project and
experience organization. This separation is meant to relieve the project teams from the
burden of finding and preserving valuable new experiences that might be reused in
later projects. Similar to the aforementioned knowledge management tools BORE and
CODE, EF prototypes from academia as well as commercial products seem to rely
mainly on formal and heavyweight technologies.

In recent years, several key concepts of SEEs have been integrated into IDEs such
as Eclipse, NetBeans, or Visual Studio. Those applications focus mainly on specific
phases of software development, such as design and implementation, rather than sup-
porting the whole software lifecycle. Additionally, the collaborative aspects of soft-
ware development in globally distributed teams, the increased importance of devel-
opment processes, as well as the storage and exchange of various kinds of knowledge
are not well supported in current IDEs.

The Jazz Platform that is currently being developed at IBM is a commercial project
aimed at providing a scalable platform for the deep integration of a broad range of
tasks across the software lifecycle [10]. It incorporates collaborative tools into the
Eclipse IDE to help developers interact with each other and make distributed software
teams more productive. According to Randall Frost [10], this approach requires that
people, teams, and organizations share Jazz’s style of collaboration and that all use
the Eclipse platform. Similar software systems are currently offered by Polarion and
Microsoft [11]. However, single tool (suite) solutions might be problematic in terms
of embracement because different stakeholders have diverse preferences regarding the
tools they use for creating their assets or for communication. Products such as Jazz
aim at developers, and non-technical stakeholders are not considered or overstrained.
In addition, industry experience with system development has shown that single tool
solutions cannot effectively improve the entire development process [12].

In recent years, communication has become more and more important during the
software development process, mainly due to globally distributed working teams and
the large number of different stakeholders involved. However, modern SEEs do not
yet provide enough support for collaborative work. On the other hand, Web-based
concepts and technologies, such as emailing, instant messaging, or Wikis have been
embraced by all stakeholders working on a software project. It has been shown that
Wikis are successful collaboration tools [13]. Harnessing collective intelligence,
which is one of the key concepts of Web 2.0, for capturing knowledge can be
achieved through Wikis (e.g., Wikipedia [14]).

 6

The FLOSS (Free/Libre Open Source Software) Trac is an enhanced Wiki with is-
sue and bug tracking functionality [15]. Nevertheless, Trac is only adequate for small
software projects without software processes because it only addresses the implemen-
tation phase by displaying code from a SVN repository and project management in
terms of roadmap and timeline support. Other collaborative FLOSSs (e.g., SnipSnap,
MASE, SubWiki, eclipseWiki [16]) are also limited to just a few aspects of a software
lifecycle.

4 The SOP Concept

In our vision, a central instance within a software organization should be used where
all project-related information and experience is stored. During software projects,
people continually document information (e.g., documented project experience). In
addition, this central platform also continuously acquires information automatically.
A Software Organization Platform (SOP) is our approach to realizing such a central
instance within a software organization.

An SOP is an extension of an SEE. However, while SEEs were aimed at integrat-
ing functionality, an SOP is aimed at integrating data, i.e., software artifacts or docu-
ments, respectively. As envisioned, SEEs were never embraced because such silver
bullet solutions cannot fulfill all the demands of its users. By integrating mainly data,

people can use their preferred tool.
Consequently, an SOP picks up the main

idea of the SEE concept, i.e., comprehensive
software process support, but concretizes and
extends it by further aspects. Fig. 1 illustrates
the three columns that represent the essential
extensions.

The first column is the Lifecycle Artifact
Management, where independent of the
applied tools and their data formats, project-
specific data and information about software
artifacts are stored and versioned on a long-
term basis. Here, an SOP grants autonomy and
flexibility regarding the tools used currently

or prospectively. An SOP aims at integrating
data but also allows the integration of tools (depending on the actual implementation).
As will be seen in the next sections, our Wiki-based implementation itself can be used
as a requirements management tool because it is a Wiki-based approach and require-
ments engineering is a text-heavy activity. For this approach, the SOP implementation
might offer a way for creating and editing specific software artifacts within a Wiki
(e.g., requirements), while artifacts that should not be edited inside the Wiki (e.g.,
source code) can be referenced by some uniform integration mechanism (e.g., subver-
sion access). In the case of tool integration, the artifact is created and stored directly
within an SOP. However, an SOP should mostly integrate data by extracting relevant
information (e.g., meta information) from artifacts created by external tools. In addi-

Fig. 1. The three columns of an SOP

 7

tion, an SOP should provide traceability links between the artifacts to show the rela-
tionships and dependencies and how changes to one software artifact influence other
artifacts.

The next column is Knowledge Management, which aims at storing individual,
project-related, and organizational experiences of previous and current projects. These
experiences should be made accessible in such a way that allows software engineers
to reuse them in future projects or in subsequent project phases. Based on the experi-
ences gained, generalization and aggregation processes derive universal patterns, best
practices, etc. that can be transferred to other projects. Experiences can arise from
information imported into an SOP from other CASE tools or created by stakeholders
within an SOP. An SOP supports its users by aggregating experiences. In addition, an
SOP should also support every stakeholder’s personal knowledge management proc-
ess. In this way, an SOP helps to improve the stakeholders’ productivity and reduces
information overload.

Lifecycle Artifact Management and Knowledge Management are complemented
by Stakeholder Collaboration. In the context of this article, collaboration means peo-
ple working together in a software project. An SOP provides information supporting
collaboration and may integrate tools for direct communication into the platform in
order to support the informal daily transfer of experience and knowledge. The basis of
the stakeholder collaboration is a central, globally available enterprise portal granting
access at any time to needed artifacts and to information that depends on the stake-
holder-specific context (e.g., role, previous and current projects, current interests,
etc.).

In the next section, we present our new prototype of the SOP concept called SOP
2.0. It is a Wiki-based approach designed for SMEs that aspire at finding an afford-
able solution. SOP 2.0 pursues an agile, lightweight development process in order to
motivate stakeholders to use the platform and share information.

5 SOP 2.0 – Implementation of the SOP Concept

In contrast to the more formalized solutions briefly described above, our Wiki-based
SOP implementation called SOP 2.0 leverages Web technologies already embraced in
the consumer sector by the general public in order to provide an open, lightweight,
and collaborative platform. SOP 2.0 relies on lightweight Web 2.0 concepts (e.g.,
tagging) and technologies (e.g., Wiki) that do not constitute a perfect general solution
but can be adapted to the specific needs of the users (e.g., tagging as basic semantic
technology vs. sophisticated Semantic Web technologies) [8]. However, SOP 2.0
pursues the approach of implicitly creating semantic relationships and acquiring
knowledge either automatically or without much effort (e.g., by using templates or
tagging). Worldwide collaboration is an integral part of the Web 2.0 spirit, thus SOP
2.0 harnesses appropriate techniques, such as syndication, recommendation, collective
intelligence, mashups, or SaaS (Software as a Service). SOP 2.0 offers a flexible and
pragmatic platform that can be integrated with existing (and embraced) specialized
tools suitable for every group of stakeholders.

 8

Section 5.1 describes the Web 2.0 concepts, which are an integral part of SOP 2.0.
Section 5.2 describes the architecture of SOP 2.0.

5.1 The Web 2.0 Paradigm as the Fundamental Basis of an SOP

This section describes how Web 2.0 technologies as a fundamental basis for a plat-
form have the potential to fulfill the defined SOP requirements. Web 2.0 is not only a
special technology, but also an umbrella term that refers to a class of Web-based
applications [17]. In the spirit of Web 2.0, Web-based applications make the most of
the intrinsic advantages of a platform, get better as more people use them by capturing
network effects, harness collective intelligence through user-generated contents, en-
able collaborative work, deliver rich user experiences via desktop-like interfaces, and
combine data from multiple sources into new services [18].

Wiki technology enables users to easily create, edit, and link documents (RqSEF).
Additionally, semantic annotations and typified links enable the creation of ontologies
(e.g., with the Semantic MediaWiki1 extension) (RqLink). Wikis in general facilitate
communication through a basic set of features and delegate the actual method of co-
ordination to the people who are using the Wiki (RqColl). Such basic features are:
• One place publishing, meaning there is only one version of a document that is

regarded as the current version (RqIntg).
• Simple and safe collaboration, referring to versioning and locking mechanisms that

most Wikis provide (RqIntg).
• Easy linking, meaning that documents within a Wiki can be linked by their title

using a simple markup – which is important for coping with the intertwined nature
of software artifacts (RqLink).

• Description on demand, meaning that links can be defined to pages that have not
been created yet, but might be filled with content in the future.

• No / low cost opportunity for capturing software artifacts, since most Wikis are
open source – like components used in an SOP.

Harnessing collective intelligence is another important concept of Web 2.0. Collective
intelligence means combining the behavior, preferences, or ideas of a group of people
to create novel insights (RqColl) [18]. Collecting answers from a large group of peo-
ple enables decision-makers to draw statistical conclusions about the group that no
individual member would have known by himself. As more people participate,
chances increase that someone will provide information regarding specific topics,
correct mistakes and improve information quality, and show interest in the contribu-
tions made. Wikipedia is one prominent example of leveraging collective intelligence.
As MediaWiki is the basis of Wikipedia and SOP 2.0, SOP 2.0 also has the potential
of establishing collective intelligence within a software company.

Syndication is another concept of Web 2.0 that enables people to cope with infor-
mation overload (RqInfO). Feeds in combination with presentation mashup platforms
(i.e., Web desktops), such as Netvibes2, are established Web 2.0 features designed to
reduce information overload.

1 http://www.semantic-mediawiki.org
2 http://www.netvibes.com

 9

5.2 Architecture of SOP 2.0

Our original implementation of an SOP (i.e., Sop 1.0) is mainly built on (Semantic)
MediaWiki, which is a popular Wiki platform used by various kinds of collaborative
Web 2.0 services, such as Wikipedia, Wikibooks, or Wikiversity. First evaluations of
SOP 1.0 in the context of public and industrial projects (see next section) showed that
the developed platform is well accepted, but that the underlying Wiki alone and the
Wiki syntax are not sufficient for providing an easy-to-use and easy-to-understand UI
that is suitable for adequately supporting a software lifecycle. In addition, the imple-
mentation did not comply with the requirements defined above.

Thus, we started to develop an improved version of an SOP implementation (SOP
2.0) with the goal of fulfilling the defined requirements that supports all stakeholders
throughout the entire software development process.

Table 1 illustrates how the two versions fulfill the requirements of an SOP. Partly-
filled circles mean that this platform is only applicable to a limited extend in terms of
complying with the requirement.

Table 1. COMPLIANCE WITH THE REQUIREMENTS OF AN SOP (REFER SECTION 2)

R
qC

ol
l

R
Q

Li
fe

R
qI

nt
g

R
qL

in
k

R
qS

EF

R
qO

pe
n

R
qI

nf
O

SOP 1.0 (MediaWiki-based)

SOP 2.0 (Framework / Flex)

Because SOP 1.0 mainly consists of the MediaWiki application with the Semantic

MediaWiki extension installed and a set of plug-ins, the development of applications
with GUI elements for SOP 1.0 is constricted to the possibilities of MediaWiki’s
special pages. This reduces flexibility and extensibility for developers (RqSEF). It is
hardly possible to enable a user to customize SOP 1.0 to his preferences. These re-
strictions influence and restrict all requirements marked by partly-filled circles. Me-
diaWiki only provides basic mechanisms (e.g., watchlists) for reducing information
overload (RqInfO). Because SOP 1.0 is limited regarding advanced user interfaces
and sophisticated interactive visualization, it is difficult to support all phases of the
software lifecycle (RqLife). MediaWiki is not designed to fulfill the requirements
RqOpen and RqIntg, because, by its very nature, it does not support integration of data
or complex applications into the platform.

Especially for providing a rich user experience and a more flexible and customiza-
ble UI, the idea was born to implement SOP 2.0, which features a GUI using Adobe’s
Flex technology3. This approach combines the benefits of Semantic MediaWiki (and
therefore includes SOP 1.0 with all its benefits) and the Wiki-based way of managing
information, as well as the benefits of a desktop-like UI.

3 http://www.adobe.com/products/flex/

 10

Fig. 2. SOP 2.0 User Interface

The Flex UI is built around a browser control mechanism (i.e., a widget or UI
component in the context of Flex), which allows browsing and editing Wiki articles
(see left side of Fig. 2). Additionally, context-sensitive data and other controls (e.g.,
drop-down menus) as well as often-needed functionalities can be provided in an ac-
cordion control (see right side of Fig. 2). The SOP 2.0 browser features a sophisti-
cated tabbing mechanism users expect from RIAs. In the screenshot, the browser
control displays a requirements document in the active tab, and the template search
extension is the active extension of the accordion control.

To assist and support people in creating and editing articles, SOP 2.0 provides an
integrated template mechanism. This template mechanism offers the facility to create
different forms for different types of articles, thus providing implicit structure and
metadata for an article. Thus, SOP 2.0 fulfills the goal of an SOP, namely that the
user provides semantic information with no or low additional effort enabled by low
threshold technologies (e.g., tagging). Fig. 3 displays an example of a SOP 2.0 tem-
plate, which generally comprises elements known from HTML forms.

 11

Fig. 3. An example of a SOP 2.0 template

Fig. 4 provides a high-level view on the architecture of SOP 2.0. SOP 2.0 features
the ability to build so-called hybrid extensions (provided by PHPinChains4 Web
framework), which may provide an HTML UI (accessible without a Flash plug-in) as
well as a Flex UI (needs Flash plug-in). In addition to the Flex UI, SOP 2.0 enables
developers to create alternate UIs for devices, e.g., Java ME applications on cell
phones, using the XML Service Extension already used by the Flex UI. This might be
interesting for stakeholders who are often away on business trips (e.g., accessing
information via a mobile phone).

4 See http://phpinchains.synflag.com for a framework overview.

 12

Fig. 4. Architecture of SOP 2.0

Table 1 illustrates that SOP 2.0 has the potential of fulfilling all the requirements
demanded of an SOP. The new architecture of SOP 2.0 enables the implementation of
advanced applications that are not or only difficult to realize with SOP 1.0 (RqSEF).
Sophisticated applications that are similar to desktop applications are possible, for
example, for visualizing relationships (interactive UI) between different pieces of
information within the Wiki (RqInfO). The architecture enables integration of CASE
tools through proprietary implementations or by leveraging external APIs for every
phase of the software development cycle (RqLife). In respect to SOP 1.0, the new
version is subject to fewer restrictions in designing interfaces, thus developers are
supported in creating more user-friendly and more consistently designed user guid-
ance (RqSEF). SOP 2.0 allows embedding arbitrary complex applications, and its
underlying architecture is designed to integrate external data (RqIntg). In addition, it
leverages the embraced Web 2.0 technologies (RqOpen).

6 Experiences and Visions

In the course of the following sections, we will describe the experiences we made
with SOP 1.0 – our initial implementation of an SOP. Scenarios 1 and 2 provide con-
crete experiences for particular phases of a typical software process. We explain
which of the activities are currently supported by our implementation and which are
going to be supported in the future. Scenarios 3, 4, and 5 briefly describe the applica-

 13

tion in the area of process modeling, experience management, and individual learning,
which are phase-comprehensive examples. For some of the activities, this section
provides scenarios from selected case studies.

6.1 Scenario 1: Requirements Engineering

A recent study shows that the requirements are often captured in office documents
[20], which are shared via email or a collaboration platform. However, this approach
has several shortcomings [2]: Collaboration chaos due to concurrent changes by
different stakeholders or late exchange via email, or distribution chaos if require-
ments are distributed across several documents; a high risk that links between the
documents will break; untyped links (semantics of links cannot be captured); and
finally, no explicit versioning and baselining of requirements.

One of the first applications of SOP 1.0 was to support the requirements engineer-
ing phase, since this phase involves a large amount of information, which can be
captured in text form. Its application to the Use Case approach by Cockburn [21] is
described in [2]. The approach was also adapted to support the TORE (Task and Ob-
ject Oriented Requirements Engineering) method, which is described in the following.
This application shows that SOP 1.0 can also handle complex document structures.

The SopTORE plug-in supports the application of the TORE requirements engi-
neering method in a project context [22]. The method consists of four hierarchical
decision-making levels with 16 different types of artifacts, which are used altogether
to make decisions explicit during the requirements phase, rather than making these
decisions implicit. The main focus of the method lies on the user tasks that the soft-
ware must support. Since the method is not widespread, this extension supports the
TORE method with a set of templates that include specific semantic relations between
the requirements artifacts. These relations are based on a documentation model de-
rived from the structure of TORE. This enables the requirements engineering team to
see to what degree TORE has been completed inside the Wiki. Through the documen-
tation model, a set of consistency rules can be specified. Furthermore, the extension
provides basic project management and rights-management functionality.

The main plug-ins for supporting this document creation are Textual Template and
Linking Support. For each document type mentioned above, a template along with
relations to other documents is defined. The consistency rules can be checked with the
Consistency Check plug-in. Furthermore, the OpenDoc Export plug-in was further
developed so that ask-statements can be annotated inside the Open Office document.
All of the Wiki articles present in the result are then exported into the document.
After processing the template, all contents of the articles that meet the query are inte-
grated into the document. Finally, the different versioning plug-ins allow defining
requirements baselines.

A potential future extension is to retrieve similar documents in order to support
linking, in particular across projects. This will increase the reuse of currently existing
software artifacts.

 14

6.2 Scenario 2: Implementation

During the implementation phase, developers create the software system using IDEs
and other relevant tools. During this phase, they implement new methods, make errors
in the system, remove them, refactor the system, build the system, debug the system,
and (sometimes) test and correct the system.

As it does not make sense to implement proprietary applications, such as Eclipse,
and embed them directly into an SOP (we cannot provide the same functionality and
stability and developers would not embrace them), we currently use SOP 1.0 to enable
and support additional services. Right now, SOP 1.0 does support the implementation
phase via:
• Pages that document information about the software system, such as functionality

(algorithms / mechanisms) implemented, defects found, treatments (refactorings)
applied, or how to deploy or install it

• Pages that document information about variants of the systems, such as specific
configurations, releases, or branches (e.g., stored in a version control system)

• Pages that document observations, experiences, and solutions with tools, treat-
ments, or programming languages

• Template-based editing to systematically document bugs (i.e., defect management)
as well as test cases, test results, and test data

SOP 1.0 also supports the following aspects supporting implementation:
• Versioning of documented, implementation-specific knowledge.
• Generation of basic reports about features, defects, or (API) changes.
• Traceability support for evaluating dependencies between code and design or re-

quirements.
Future ways of supporting the implementation phase in SOP 2.0 include:
• Documentation of code: Code is represented in SOP 2.0 either using unmodifiable

pages synchronized with the version control repository (i.e., stored in SVN/CVS
and SOP 2.0) or linked dynamically (i.e., stored in SVN/CVS but not in SOP 2.0).

• Documentation of treatment history: Defects found by defect detectors such as
Findbugs, PMD, or DoctorQ are directly stored in SOP 2.0 and associated with
code representations (e.g., a page describing a class). The treatment history (e.g.,
applied refactorings) is recorded in SOP. This feature would require traceable links
or semantic relationships (e.g., defectFoundIn SVN1::Directory/Class1/Method3
::VersionX-Y).

• Documentation of important algorithms (e.g., compression algorithm) in pseudo
code; domain knowledge from (multiple) requirement phases. This feature would
require traceable links or semantic relationships (e.g., isImplementedIn
SVN2::Directory/Class1/Method3::VersionX-Y))

• Generate Defect Report: Generate a (dynamic) report about all defects, features, or
other changes within a system, version, etc. (including charts, etc.). This feature
would require traceable access to all defect data in a specific version and chart-
generating extensions.

 15

6.3 Scenario 3: Process Modeling

After an initial IESE-internal application describing 100 processes, 60 roles, and
about 150 document templates [23], we transferred the SOP 1.0 framework to an
organization developing embedded software with 30 software developers. The task
was to provide an up-to-date process documentation that could assist in establishing
and proving Automotive SPICE5 compliance, and that provided assistance to the
developers in their daily work. In order to utilize and make explicit the knowledge
stored in people’s heads, it was decided that the documentation contents was to be
created by the developers themselves, with a central instance (Software Engineering
Process Group, SEPG) setting
up structures and coordinating
their efforts.

Since calendar time was an
issue, a technical solution had to
support parallel editing of the
resulting process documenta-
tion. It was not possible to in-
stall special software on all
developer computers, so a tech-
nical solution could only utilize
standard Windows or Linux
resources. A third challenge was
budget; it was not possible to
spend large amounts of money
on licenses for software. SOP
1.0 met all these challenges,
since it consists only of Open
Source software, needs only a
Web browser to be used, and
provides parallel editing capa-
bilities by its very nature.

The process model within SOP 1.0 is based on four entity (= page) types: proc-
esses/activities, work products, tools, and roles. The page structure is predefined using
the Linking Assistance plug-in, giving users a very simple way to insert new pages
that comply with the structure defined by the SEPG. The meta model is very simple:
Activities produce and consume artifacts, supported by tools, and have exactly one
responsible role and an arbitrary number of contributing or informed roles. Until
March 2008, more than 600 pages were created, with more than 3,500 links from one
page to another.

In order to keep the resulting process model consistent, automated consistency
checks were introduced, based on typed pages and links provided by Semantic Me-
diaWiki. For example, a link of the type “input” was only allowed to point from an
activity page to an artifact page, otherwise a consistency error was raised. Many other

5 http://www.automotivespice.com/

Fig. 5. Representation of process model

 16

consistency checks were implemented, e.g., for roles not responsible for or contribut-
ing to any activity, activities not having any roles assigned, unused tools, and others.
Checking all this manually would have taken days, and the quality of the result would
still have been questionable – the automated version only took seconds.

The major extension to the standard SOP 1.0 platform was the visualization of the
process model. While syntactic consistency can easily be checked by a machine, se-
mantic consistency remains mostly a human task: Does it make sense that this activity
produces this artifact? In a pure text-based representation, however, it is very hard to
identify such issues (600 pages, 3,500 links), because any reviewer has to construct a
mental model of what the text specifies and then needs to examine this mental model.
Therefore, we implemented another extension that automatically created graphical
representations of the model (parts) specified by the text, again using the semantic
information (see Fig. 5). These graphs proved to be an enormous help in assuring
semantic consistency, because they always represented the current model and were
updated automatically.

Our experiences with using SOP 1.0 as a process modeling platform are very posi-
tive. The Wiki syntax proved to be no problem for the editors (mostly software devel-
opers). The semantic capabilities were a necessary precondition for using Wiki-
technology; without them, creating such process documentation and keeping it consis-
tent would not have been feasible. The open nature of the SOP 1.0 platform allowed
us to add extensions wherever necessary.

After using SOP 1.0 for about eleven months now, this decision has proven to be
the right one. It provides a low-tech, low-budget solution to the challenges raised and
allows arbitrary extensions to be added for any new issues arising.

6.4 Scenario 4: Experience Management

In the context of SOP 1.0, the A2E (Action, Benefit, Context, Description, Evidence)
structure [24] was used for gathering, aggregating, and preserving valuable knowl-
edge from old software projects. A2E encompasses all information that is required in
the EF. An aggregation technique helps to aggregate observations into experiences
and experiences into patterns and laws. The elements used in this structure are de-
scribed in Table 2.

Table 2. THE A2E STRUCTURE FOR EXPERIENCES
 Description

Action Description of an activity that was applied to cause an outstanding effect.
Benefit Description of the positive or negative effect that was caused by the action.
Context Characterization of the environment the action was performed in.
Description Detailed explanation and depiction of the problem, solution, intent, applica-

bility, etc. of the software pattern – based on a pattern template.
Evidence Report and list of evidence that back up the claim of the software pattern

(e.g., used experiences) as well as other relevant references.

The A2E structure was implemented in SOP 1.0 to structure the knowledge within
the EF. The experiences can be annotated with keywords and by choosing context

 17

artifacts. A keyword browser supports the user in selecting domain keywords, which
come from an OWL ontology based on SWEBOK. These keywords belong to the
domain concept categories product, process, role, and knowledge. In order to describe
the context of an experience (i.e., the (C) of the A2E structure), the SOP 1.0 extension
helps to select Wiki pages from the categories process, product, process, individual,
group, organization, customer, and software tool.

6.5 Scenario 5: Learning Spaces

An approach has been developed to produce so-called learning spaces, first for en-
hancing the reuse of experience packages and second, for knowledge acquisition. A
learning space is generated by the system when a user accesses an experience package
(i.e., experience description) from the database during a project. The generation proc-
ess enriches the experience package with additional situational and instructional con-
tent. From a technical point of view, a learning space consists of a hypertext docu-
ment with linked pages.

A learning space follows a specific global learning goal (the learning goal level is
selected by the student) and is created based on context information about the current
situation and the experience package. The learning space approach was implemented
as an extension of SOP 1.0 and is presented by means of Wiki pages in SOP 1.0. By
integrating the learning space generation and presentation functionality into SOP 1.0,
knowledge management and e-learning have been merged into one system. See [16]
for a detailed description of the concepts in general and the generation process in
particular.

7 Current Status and Future Work

The architecture of the upcoming version, SOP 2.0, constitutes fundamental en-
hancements. It is not only a technological advancement because of a sophisticated
framework, but also provides more freedom for developers as well as for users. In
addition, it is more tailored to fulfilling the requirements we defined for an SOP.

Right now, we have finished the development of the basic architecture of SOP 2.06
as depicted in Fig. 4. However, actual experiences came from the usage of SOP 1.0 as
described in the scenarios in section 6. Table 3 provides an overview of exten-
sions/plug-ins (i.e., features) beneficial for which software development phase (or for
experience management and project management associated with every phase).

6 SOP 2.0 Sourceforge project Website (https://sourceforge.net/projects/iese-sop).

 18

Table 3. FEATURE MATRIX FOR SOP 1.0 AND SOP 2.07

Features R
eq

ui
re

m
en

ts

D
es

ig
n

C
od

e

Te
st

D
ep

lo
ym

en
t

Pr
oj

ec
t

M
an

ag
em

en
t

Ex
pe

rie
nc

e
M

an
ag

em
en

t

Traceability Matrix
SopTORE
Consistency Check
Freeze / Unfreeze
VersionTag List
Rights Management (Projects)
Textual Templates
Linking Support
Learning Spaces
Visual. of Process Models
Visual. of Relations

SO
P

1.
0

OpenDoc Export
Document Basket*
Graphical Templates
Text Assistance*
Visual Browsing*
PID*
Expert Management*

SO
P

2.
0

Personal Desktop*

The feature matrix shows only a subset of the available SOP 1.0 plug-ins, because
we abstain from universal plug-ins, such as find & replace in a collection of docu-
ments. Features marked with * are under development or planned.
• Traceability Matrix displays typed links between documents (e.g., the links be-

tween Use Cases and Actors).
• SopTORE: see section 6.1
• Consistency Check allows defining SPARQL-based queries that are pre-formed

periodically to detect inconsistencies in typed links and meta data.
• Freeze / Unfreeze converts links into permalinks and vice versa, thus providing a

versioning feature.
• Version Tag is another feature that adds a version to multiple documents, select-

able via category, meta data, and typed links.
• Rights Management allows restricting editing access to documents.

7 A filled circle means that the extension/plug-in is entirely appropriate for this phase, whereas

a partly-filled circle means that the extension/plug-in is appropriate with exceptions. A white
circle stands for no or low application potential.

 19

• Textual Templates and Linking Support: A user can define templates along with
configuring a suggestion for (possible typed) links. For example, for a Use Case
template, different types of links to other documents, such as actors, are suggested
(e.g., primary, secondary).

• Learning Spaces enrich experiences with learning packages (see section 6.5).
• Visualization of Process Models: see section 6.3.
• Visualization of Relations allows presenting a graphical overview of documents

based on meta data and typed links.
• OpenDoc Export allows exporting a set of articles as a single document in Open

Document Text (ODT) format.
• Document Basket*: Consider description below.
• Graphical Templates: Flex-UI templates.
• Text Assistance*: Similar to eclipse code assist.
• Visual Browsing*: Consider description below.
• PID*: Consider description below.
• Expert Management*: Consider description below.
• Personal Desktop*: Similar to Web 2.0 Web Desktops (e.g., Netvibes). It helps to

keep a knowledge worker up-to-date and reduces information overload.
Our main objective for the future is to establish SOP 2.0 as the central system within
software organizations. This means that SOP 2.0 shall be the central information,
knowledge, and experience repository for stakeholders throughout the whole software
development process (RqLife). In our vision, SOP 2.0 will keep track of all activities
throughout the entire software process by being highly integrated into the CASE tool
landscape of a software organization. This should be realized by leveraging innova-
tive import and export capabilities or information extraction and aggregation agents,
which will help SOP 2.0 to be embraced by all participants (RqIntg). These agents
will allow seamless integration by recognizing changes (i.e., CRUD (Create, Read,
Update, Delete) activities) in external information repositories (e.g., network drives)
(RqOpen). Extracted information will be automatically analyzed, aggregated, linked,
and made accessible within SOP 2.0 (RqLink). As an example, the creation of a soft-
ware component in a CASE tool, such as Eclipse, will be enriched by information
extracted from SOP 2.0 in such a sense that the tools access APIs in order to aggre-
gate documentation, results from tests, documented experiences, etc. for this compo-
nent.

We are currently exploring increased possibilities for more user-friendly and
clearly arranged user interfaces, for example with Adobe Flex. This enables graphical
applications to visualize relations between documents, roles, or artifacts (RqSEF,
RqInfO). A major problem of the MediaWiki platform is the overview of information
structures. In fact, it is easy to create and link documents, but it is hard to preserve the
overview, especially if many people create and link documents. Hence, we want to
implement a visual navigation application (“Visual Browsing” feature), which should
be as intuitive and suitable as Apple’s Coverflow (for browsing graphics) for brows-
ing the complete Wiki documentation graph.

Furthermore, we plan a batch processing functionality, so that a user can collect
documents manually or automatically (e.g., by categories), can optionally organize

 20

them into tree structures (“Document Basket” feature) and then execute operations on
the set of documents (e.g., creation of a report).

Knowledge in software organizations is generally bound to specific persons, for
example the creator of software components. An expert management system (“Expert
Management” feature) within SOP 2.0 will use the semantic capabilities to link in-
formation extracted from versioning systems (e.g., subversion) with the responsible
expert (RqLink, RqInfO). Expert management will also semantically link persons with
documented experiences, further artifacts, and documentation.

Another vision is that SOP 2.0 will provide context-sensitive information through a
Personal Information Delivery (“PID” feature) mechanism (RqInfO). This mechanism
will detect the current context of a user and proactively provide relevant information.
The delivered content will be structured and presented according to the needs and
preferences of the user. The underlying adaptation (i.e., initiated by the user), respec-
tively adaptivity (i.e., performed automatically by the system without interaction of
the user), will be realized by using decision models from the domain of product line
engineering. The decision models will explicitly define the commonalities and vari-
abilities of the information structures provided. The different variants will then be
instantiated by a resolving algorithm on-demand, i.e., when the user or the system
requests context-sensitive information to be presented in SOP 2.0.

8 Summary

This article described the concept of a Software Organization Platform (SOP) as the
central system for accessing and managing information, knowledge, and experiences.
An SOP is the central instance within a software organization where to find relevant
information. In addition, the main focus is on data integration, so that stakeholders
can use their preferred tools. Tool integration (i.e., a CASE tool directly integrated
into the platform) depends on the actual implementation and the actual software or-
ganization. This article presented recent experiences, the current status, and future
perspectives of our implementation of an SOP called SOP 2.0 aimed at SMEs. First
experiences in industrial and research projects have shown that our SOP implementa-
tion is an effective, easy-to-use, extendable system, which can handle a broad variety
of information and is able to support various business tasks within a software organi-
zation.

Nevertheless, the initial prototype of an SOP (called SOP 1.0) covered only spe-
cific tasks of a software process: The upcoming SOP 2.0 and the popular Web 2.0
technologies could serve as the basis for creating new applications that provide easy
access to up-to-date information from various sources. The new architecture of SOP
2.0 has the potential of fulfilling most of the requirements defined for an SOP and
will provide extended flexibility and extendibility. More user-friendly and intuitive
user interfaces, innovative services, personal information delivery, interfaces to third-
party systems, or easy creation and customization of mashup applications within an
SOP will provide knowledge workers in software organizations with innovative pos-
sibilities for managing information and knowledge on personal, team, and organiza-
tional levels.

 21

The semantic platform that forms the basis for SOP 2.0 provides promising new
ways of storing and retrieving information within software projects. It enables the
system to deliver information and experiences in context-sensitive and personally
adapted ways. Contrary to complex, expensive, and formal systems, SOP 2.0 can
provide both, low-threshold technologies for storing and accessing information and
the possibilities of machine-readable formats and semantic Web technologies.

Acknowledgements We acknowledge proof-reading of this article by Savitha
Chennagiri and Sonnhild Namingha.

References

1. Rus, I., Lindvall, M.: Knowledge Management in Software Engineering. IEEE Software,
vol. 19, no. 3 (2002)

2. Decker, B., Ras, E., Rech, J., Jaubert, P., Rieth, M.: Wiki-based Stakeholder Participation in
Requirements Engineering. IEEE Software, 24(2), pp. 28--35 (2007)

3. Oddy, G.C.: Software engineering environments. CompEuro '88. Design, Concepts, Meth-
ods and Tools, pp. 362-367 (1988)

4. Skuce, D.: Knowledge Management in Software Design. A Tool and a Trial. Software En-
gineering Journal, no. 5, vol. 10, pp. 183--193 (1995)

5. Lethbridge , T: Tim Lethbridge's PhD Research,
http://www.site.uottawa.ca/~tcl/personal/PhDWork.shtml

6. Henniger, S.: Case-Based Knowledge Management Tools in Software Development. Auto-
mated Software Engineering, no. 3, vol. 4, pp. 319--339 (1997)

7. O’Reilly, T.: Different Approaches to the Semantic Web, http://radar.oreil-
ly.com/archives/2007/03/different-approaches-to-the-se.html

8. Khare, R.: Microformats. The next (small) thing on the semantic web? IEEE internet com-
puting, vol. 10, no. 1, pp. 68--75 (2006)

9. Basili, V.R., Caldiera, G., Rombach, H.D.: Experience Factory. In: Marciniak, J.J. (ed.):
Encyclopedia of Software Engineering, vol. 1. John Wiley & Sons, New York, pp. 469--476
(1994)

10. Frost, R.: Jazz and the eclipse way of collaboration. IEEE software, vol. 24, no. 6, pp. 114--
117 (2007)

11. Versteegen, G.: Anforderungsgetriebenes ALM. Objektspektrum. Online-Ausgabe Re-
quirements Engineering (2007)

12. Sharon, D.; Anderson, T.: A complete software engineering environment. IEEE software,
vol.14, no.2, pp. 123--125 (1997)

13. Chao, J.: Student Project Collaboration Using Wikis. 20th Conference on Software Engi-
neering Education & Training, CSEET '07, pp. 255--261 (2007)

14. Wikipedia, http://wikipedia.com
15. Trac open source project, http://trac.edgewall.org
16. Rech, J., Ras, E., & Decker, B.: Riki. A System for Knowledge Transfer and Reuse in Soft-

ware Engineering Projects. In: M. Lytras & A. Naeve (Eds.): Open Source for Knowledge
and Learning Management: Strategies beyond Tools. Idea Group, Inc. (2007)

17. Greaves, M.: Semantic Web 2.0. In: IEEE Intelligent Systems, vol. 22, no. 2, March-April,
pp. 94--96 (2007)

18. Web 2.0: Compact Definition?,
http://radar.oreilly.com/archives/2005/10/web_20_compact_definition.html

19. Segaran, T.: Programming Collective Intelligence, O’Reilly, p. 2 (2007)

 22

20. Rech, J., Ras, E., Decker, B.: Intelligent Assistance in German Software Development. A
Survey. IEEE Software, July-Aug, vol. 24, no. 4, pp. 72--79 (2007)

21. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Longman Publishing Co. Inc.
(2000)

22. Paech, B.; Kohler, K.: Task-Driven Requirements in Object-Oriented Development. In:
Leite, J.C.S.P. (Ed.), Doorn, J.H. (Ed.): Perspectives on Software Requirements. Dordrecht
Kluwer, Academic Publishers, pp. 45--67 (2004)

23. Decker, B.: Using Semantic Wiki Technology for Collaborative Software Process Evolution
Workshop on Learning Software Organization, Co-located with Conference for Professional
knowledge Management, Potsdam (2007)

24. Rech, J., Ras, E.: Aggregation von Erfahrungen in Erfahrungsdatenbanken. Künstliche
Intelligenz, p. 6. (2007)

